35 research outputs found

    Outage Probability Analysis of Mixed RF-FSO System Influenced by Fisher-Snedecor Fading and Gamma-Gamma Atmospheric Turbulence

    Full text link
    In this paper, we investigate a dual-hop relaying system, composed of radio frequency (RF) and free-space optical (FSO) link. Decode-and-forward (DF) relay is employed to integrate the first RF link and the second line-of-sight FSO links. The RF channel is assumed to be subject to recently proposed Fisher-Snedecor fading model, which was shown to be convenient for modeling in realistic wireless communication scenarios. The FSO channel is affected by Gamma-Gamma distributed atmospheric turbulence. Expression for the outage probability is derived and utilized to present numerical results. Based on presented results, the effects of various RF and FSO channels parameters on the overall system performance are examined and discussed.Comment: Presented at 2018 26th Telecommunications Forum (TELFOR

    Error rate and ergodic capacity of RF-FSO system with partial relay selection in the presence of pointing errors

    Get PDF
    This paper presents an analysis of a multiple dual-hop relaying system, which is composed of km-class radio frequency (RF)-free-space optical (FSO) links. Partial relay selection based on outdated channel state information (CSI) is employed in order to select active relay for further transmission. Amplify-and-forward relaying protocol is utilized. The RF links are assumed to be subject to Rayleigh fading, and the FSO links are influenced by both Gamma–Gamma atmospheric turbulence and pointing errors. On the basis of our previously derived expression for cumulative distribution function of the equivalent signal-to-noise ratio of the whole system, we derive novel analytical expressions for the average bit-error rate (BER) and ergodic capacity that are presented in terms of the Meijer’s G-function and extended generalized bivariate Meijer’s G-function, respectively. The numerical results are confirmed by Monte Carlo simulations. Considering the effect of time-correlation between outdated CSI and actual CSI related to the RF channel at the time of transmission, the average BER and the ergodic capacity dependence on various system and channel parameters are observed and discussed. The results illustrate that the temporal correlation between outdated and actual CSI has strong effect on system performance, particularly on BER values, when FSO hop is influenced by favorable conditions

    Comparison of exercise, dobutamine-atropine and dipyridamole-atropine stress echocardiography in detecting coronary artery disease

    Get PDF
    BACKGROUND: Dipyridamole and dobutamine stress echocardiography testing are most widely utilized, but their sensitivity remained suboptimal in comparison to routine exercise stress echocardiography. The aim of our study is to compare, head-to-head, exercise, dobutamine and dipyridamole stress echocardiography tests, performed with state-of-the-art protocols in a large scale prospective group of patients. METHODS: Dipyridamole-atropine (Dipatro: 0.84 mg/kg over 10 min i.v. dipyridamole with addition of up to 1 mg of atropine), dobutamine-atropine (Dobatro: up to 40 mcg/kg/min i.v. dobutamine with addition of up to 1 mg of atropine) and exercise (Ex, Bruce) were performed in 166 pts. Of them, 117 pts without resting wall motion abnormalities were enrolled in study (91 male; mean age 54 ± 10 years; previous non-transmural myocardial infarction in 32 pts, angina pectoris in 69 pts and atypical chest pain in 16 pts). Tests were performed in random sequence, in 3 different days, within 5 day period under identical therapy. All patients underwent coronary angiography. RESULTS: Significant coronary artery disease (CAD; ≥50% diameter stenosis) was present in 69 pts (57 pts 1-vessel CAD, 12 multivessel CAD) and absent in 48 pts. Sensitivity (Sn) was 96%, 93% and 90%, whereas specificity (Sp) was 92%, 92% and 87% for Dobatro, Dipatro and Ex, respectively (p = ns). Concomitant beta blocker therapy did not influence peak rate-pressure product and Sn of Dobatro and Dipatro (p = ns). CONCLUSION: When state-of-the-art protocols are used, dipyridamole and dobutamine stress echocardiography have comparable and high diagnostic accuracy, similar to maximal post-exercise treadmill stress echocardiography

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    Author Correction: Native diversity buffers against severity of non-native tree invasions.

    Get PDF

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases5,6,7^{5,6,7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    Native diversity buffers against severity of non-native tree invasions.

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling
    corecore